Tổng quát hóa Định lý Pythagoras

Các hình đồng dạng trên ba cạnh tam giác

Nhà toán học Hippocrates của Chios ở thế kỷ V TCN đã tổng quát hóa định lý Pytago mở rộng diện tích không chỉ cho các hình vuông trên ba cạnh của tam giác mà còn cho các đa giác đồng dạng,[45] và đã được Euclid đưa vào cuốn Cơ sở:[46]

Nếu dựng các hình đồng dạng (xem hình học Euclid) tương ứng trên cách cạnh của một tam giác vuông, thì tổng diện tích của hai hình trên hai cạnh kề bằng diện tích của hình dựng trên cạnh huyền.

Sự mở rộng này giả thiết rằng các cạnh của tam giác ban đầu là tương ứng với các cạnh của ba hình đồng dạng (do vậy tỉ số chung giữa các cạnh của ba tam giác này là a:b:c).[47] Trong khi chứng minh của Euclid chỉ áp dụng cho các đa giác lồi, định lý cũng áp dụng cho các đa giác lõm và thậm chí cho các hình đồng dạng có biên cong (nhưng vẫn phải có một cạnh bằng cạnh của tam giác vuông ban đầu).[47]

Ý tưởng cơ bản đằng sau sự mở rộng này đó là diện tích của một hình phẳng tỉ lệ với bình phương của một độ dài bất kỳ, và đặc biệt là tỉ lệ với bình phương của độ dài của một cạnh của tam giác. Do đó, nếu các hình đồng dạng với diện tích tương ứng A, B và C được dựng lên các cạnh tương ứng của tam giác vuông a, b và c thì:

A a 2 = B b 2 = C c 2 , {\displaystyle {\frac {A}{a^{2}}}={\frac {B}{b^{2}}}={\frac {C}{c^{2}}}\,,} ⇒ A + B = a 2 c 2 C + b 2 c 2 C . {\displaystyle \Rightarrow A+B={\frac {a^{2}}{c^{2}}}C+{\frac {b^{2}}{c^{2}}}C\,.}

Nhưng theo định lý Pytago, a2 + b2 = c2, do vậy A + B = C.

Ngược lại, nếu có thể chứng minh rằng A + B = C cho ba hình đồng dạng mà không sử dụng định lý Pytago, thì có thể quay ngược lại để đưa ra một chứng minh cho định lý. Ví dụ, tam giác vuông ở trung tâm có thể dựng lại được và sử dụng tam giác C đặt trên cạnh huyền của nó, và hai tam giác (A và B) dựng trên hai cạnh kề, dựng bằng cách chia tam giác ở trung tâm bởi đường cao kéo từ đỉnh góc vuông. Tổng của diện tích hai tam giác đồng dạng nhỏ do đó sẽ bằng tam giác thứ ba, hay A + B = C và đảo lại điều trên dẫn đến định lý Pytago a2 + b2 = c2.

Mở rộng định lý cho các tam giác đồng dạng,
(diện tích màu lục) A + B = C (diện tích lam).
Định lý Pythagoras cho các tam giác vuông đồng dạng.Tổng quát hóa cho các ngũ giác đều.

Định lý cos

Khoảng cách s giữa hai điểm (r1, θ1) và (r2, θ2) trong tọa độ cực được tính bằng định lý cos. Góc trong Δθ = θ1−θ2.
Bài chi tiết: Định lý cos

Định lý Pytago là trường hợp đặc biệt của định lý tổng quát hơn liên hệ giữa các cạnh của một tam giác bất kỳ, đó là định lý cos:[48]

a 2 + b 2 − 2 a b cos ⁡ θ = c 2 , {\displaystyle a^{2}+b^{2}-2ab\cos {\theta }=c^{2},}

với θ là góc tạo bởi hai cạnh a và b.

Khi θ bằng 90 độ (π/2 radian), thì cosθ = 0, và công thức quy về công thức Pytago.

Tam giác bất kỳ

Tổng quát định lý Pythagoras bởi Tâbit ibn Qorra.[49] Hình bên dưới: ảnh phản xạ của tam giác ABD (lam) tạo thành tam giác DBA (tím), đồng dạng với tam giác ABC (ở trên).

Cho một tam giác bất kỳ với ba cạnh a, b, c, chọn một trong ba đỉnh của tam giác, dựng lên cạnh đối diện hai điểm sao cho thu được tam giác cân có góc cân bằng góc θ của đỉnh đã chọn. Giả sử góc θ đã chọn đối diện với cạnh có độ dài c của tam giác. Cách dựng như sau: dựng tam giác ABD với điểm D nằm trên cạnh BC và có góc ADB bằng θ cạnh BD bằng r. Tương tự dựng một tam giác thứ hai có góc θ đối diện với cạnh b và độ dài cạnh s dọc cạnh c, như ở hình bên cạnh. Nhà toán học trung cổ Thābit ibn Qurra phát hiện các cạnh của những tam giác này có mối liên hệ như sau:[50][51]

a 2 + b 2 = c ( r + s ) {\displaystyle a^{2}+b^{2}=c(r+s)}

Khi góc θ tiến về π/2, cạnh của tam giác cân thu hẹp lại, và độ dài r và s chồng lên nhau ít hơn. Khi θ = π/2, tam giác ADB trở thành tam giác vuông, và r + s = c, và định lý trở về định lý Pytago.

Chứng minh định lý trên khá dễ dàng. Vì tam giác ABC và ABD có hai góc bằng nhau, chung một góc ở đỉnh B, và có hai góc bằng θ, do đó ABC đồng dạng với tam giác ABD. Lấy tỉ số giữa hai cạnh chung góc θ và kề góc này,

c a = a r {\displaystyle {\frac {c}{a}}={\frac {a}{r}}}

Tương tự cho tam giác còn lại, có

c b = b s {\displaystyle {\frac {c}{b}}={\frac {b}{s}}}

Biến đổi hai tỉ số trên và cộng hai vế lại:

c r + c s = a 2 + b 2 {\displaystyle cr+cs=a^{2}+b^{2}}

thu được điều phải chứng minh.

Định lý vẫn đúng cho tam giác có góc tù θ {\displaystyle \theta } , khi đó hai đoạn r và s không chồng lên nhau.

Tam giác bất kỳ và các hình bình hành dựng trên các cạnh

Tổng quát hóa cho một tam giác bất kỳ,
diện tích màu lam bằng diện tích màu lục.Cách dựng hình cho chứng minh các hình bình hành dựng trên cạnh của tam giác tùy ý.

Định lý diện tích Pappus là một cách mở rộng khác, áp dụng cho một tam giác bất kỳ, sử dụng các hình bình hành dựng trên ba cạnh của tam giác này (và hình vuông là trường hợp đặc biệt khi tam giáctam giác vuông và hình bình hành trở thành hình vuông). Hình trên bên phải minh họa cách dựng các hình bình hành: Đầu tiên dựng hai hình bình hành bất kỳ trên hai cạnh của tam giác, sau đó dựng hình bình hành thứ ba (hai cạnh ngoài cùng của hai hình bình hành cắt nhau tại một điểm, và dựng hình bình hành thứ ba có cạnh bằng độ dài của mũi tên màu đen). Định lý phát biểu rằng diện tích của hình bình hành thứ ba bằng tổng diện tích của hai hình bình hành ban đầu. Sự thay thế hình vuông bằng các hình bình hành mang lại sự tương tự rất giống với định lý Pytago gốc. Định lý này mang tên nhà toán học Pappus của Alexandria sống ở thế kỷ IV của Công Nguyên.[52][53]

Hình bên dưới chỉ ra cách chứng minh cho định lý này. Tập trung vào hình bình hành bên trái trước. Hình bình hành màu lục có cùng diện tích với phần hình bình hành màu lam do có chung cạnh đáy b và chiều cao h. Mặt khác, hình bình hành màu lục lại bằng chính hình bình hành thứ nhất ở trên, do chúng có chung cạnh đáy (là cạnh của tam giác) và chung chiều cao. Lặp lại lập luận trên cho hình bình hành thứ hai ở bên phải, sau đó cộng lại thu được điều phải chứng minh.

Hình học không gian

Bài chi tiết: Hình học không gian
Định lý Pythagoras trong không gian ba chiều liên hệ cạnh chéo AD với ba cạnh của hình hộp chữ nhật.Một tứ diện có ba góc vuông chung tại một đỉnh.

Trong hình học không gian, định lý Pythagoras có thể áp dụng như sau. Xét một hình hộp chữ nhật như ở hình bên. Consider a rectangular solid as shown in the figure. Theo định lý Pytago, đường chéo BD bằng:

B D ¯ 2 = B C ¯ 2 + C D ¯ 2 {\displaystyle {\overline {BD}}^{\,2}={\overline {BC}}^{\,2}+{\overline {CD}}^{\,2}\,}

do ba cạnh này làm thành một tam giác vuông BCD. Sử dụng đường chéo BD và cạnh đứng AB cho tam giác vuông ABD, độ dài đường chéo AD tính được nhờ áp dụng một lần nữa định lý Pythagoras:

A D ¯ 2 = A B ¯ 2 + B D ¯ 2 {\displaystyle {\overline {AD}}^{\,2}={\overline {AB}}^{\,2}+{\overline {BD}}^{\,2}\,}

và kết hợp với kết quả trên cho:

A D ¯ 2 = A B ¯ 2 + B C ¯ 2 + C D ¯ 2 {\displaystyle {\overline {AD}}^{\,2}={\overline {AB}}^{\,2}+{\overline {BC}}^{\,2}+{\overline {CD}}^{\,2}}

Kết quả này minh họa cho độ lớn của một vectơ v (đường chéo AD) biểu diễn theo các thành phần trực giao của nó {vk} (ở trên là ba thành phần trực giao):

‖ v ‖ 2 = ∑ k = 1 3 ‖ v k ‖ 2 . {\displaystyle \|\mathbf {v} \|^{2}=\sum _{k=1}^{3}\|\mathbf {v} _{k}\|^{2}.}

Từ công thức trên có thể coi là bước tổng quát của định lý Pytago cho không gian nhiều chiều hơn. Tuy vậy, kết quả này chỉ là lặp lại ứng dụng của định lý Pytago cho không gian hai chiều cho các tam giác vuông ở các mặt phẳng trực giao.

Một dạng tổng quát hơn của định lý Pytago cho không gian ba chiều là định lý de Gua, đặt tên theo Jean Paul de Gua de Malves: Nếu một tứ diện có một góc khối vuông (như góc của một hình lập phương), thì bình phương diện tích của mặt đối diện với góc khối vuông bằng tổng bình phương diện tích của ba mặt còn lại. Kết quả này có thể tổng quát cho "định lý Pytago n chiều":[54]

Gọi x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} là các vectơ trực giao trong ℝn. Xét một đơn hình n chiều S với các đỉnh 0 , x 1 , … , x n {\displaystyle 0,x_{1},\ldots ,x_{n}} . (coi đơn hình (n − 1) chiều với các đỉnh x 1 , … , x n {\displaystyle x_{1},\ldots ,x_{n}} mà không bao gồm gốc như là "cạnh huyền" của S và phần còn lại các mặt (n − 1) chiều S như là các "chân" của nó.) Thì khi đó bình phương thể tích của "cạnh huyền" của S bằng tổng bình phương thể tích của n chân của nó.

Phát biểu này được minh họa trong ba chiều bằng tứ diện hình bên cạnh. "Cạnh huyền" là mặt đáy của tứ diện ở mặt sau của hình, và "các chân" là ba mặt xuất phát từ đỉnh góc khối vuông. Khi chiều cao từ đỉnh xuống mặt đáy tăng lên, diện tích của ba mặt bên tăng lên, trong khi mặt đáy là cố định. Định lý gợi lý rằng khi chiều cao ở giá trị phù hợp tạo ra một góc vuông ở đỉnh thì có thể áp dụng được định lý Pytago tổng quát. Phát biểu theo cách khác:[55]

Cho một đơn hình n-hộp chữ nhật trong không gian n chiều, bình phương của (n − 1)-diện (facet) đối đỉnh góc vuông sẽ bằng tổng bình phương của thành phần (n − 1)-diện còn lại.

Không gian tích trong

Các vectơ tham gia vào định lý hình bình hành.

Định lý Pythagoras có thể tổng quát hóa ở không gian tích trong,[56] một khái niệm tổng quát hóa của không gian Euclid 2 và 3 chiều. Ví dụ, một hàm số có thể coi như là một vectơ với các thành phần vô hạn trong không gian tích trong, như trong giải tích hàm.[57]

Trong một không gian tích trong, khái niệm vuông góc được thay thế bằng khái niệm trực giao: hai vectơ vw là trực giao nếu tích trong ⟨ v , w ⟩ {\displaystyle \langle \mathbf {v} ,\mathbf {w} \rangle } bằng không. Tích trong là sự tổng quát hóa của tích vô hướng vectơ. Tích vô hướng được gọi là tích trong tiêu chuẩn hay tích trong Euclid. Tuy vậy có thể định nghĩa rất nhiều tích trong khác.[58]

Khái niệm độ dài được thay thế bằng khái niệm chuẩn ||v|| của một vectơ v, định nghĩa như sau:[59]

‖ v ‖ ≡ ⟨ v , v ⟩ . {\displaystyle \lVert v\rVert \equiv {\sqrt {\langle v,v\rangle }}\,.}

Trong không gian tích trong, định lý Pytago phát biểu rằng với hai vectơ trực giao bất kỳ vw

‖ v + w ‖ 2 = ‖ v ‖ 2 + ‖ w ‖ 2 . {\displaystyle \left\|\mathbf {v} +\mathbf {w} \right\|^{2}=\left\|\mathbf {v} \right\|^{2}+\left\|\mathbf {w} \right\|^{2}.}

Ở đây các vectơ vw có thể coi như là hai cạnh kề của tam giác vuông với cạnh huyền cho bởi phép cộng vectơ v + w. Dạng định lý Pytago này là hệ quả của các tính chất của không gian tích trong:

‖ v + w ‖ 2 = ⟨ v + w ,   v + w ⟩ = ⟨ v ,   v ⟩ + ⟨ w ,   w ⟩ + ⟨ v ,   w ⟩ + ⟨ w ,   v ⟩   = ‖ v ‖ 2 + ‖ w ‖ 2 , {\displaystyle \left\|\mathbf {v} +\mathbf {w} \right\|^{2}=\langle \mathbf {v+w} ,\ \mathbf {v+w} \rangle =\langle \mathbf {v} ,\ \mathbf {v} \rangle +\langle \mathbf {w} ,\ \mathbf {w} \rangle +\langle \mathbf {v,\ w} \rangle +\langle \mathbf {w,\ v} \rangle \ =\left\|\mathbf {v} \right\|^{2}+\left\|\mathbf {w} \right\|^{2},}

với tích trong của hai số hạng chéo bằng không, bởi vì chúng trực giao với nhau.

Định lý Pytago được tổng quát hơn nữa ở không gian tích trong khi nó áp dụng cho các vectơ không trực giao với định lý hình bình hành:[59]

2 ‖ v ‖ 2 + 2 ‖ w ‖ 2 = ‖ v + w ‖ 2 + ‖ v − w ‖ 2 {\displaystyle 2\|\mathbf {v} \|^{2}+2\|\mathbf {w} \|^{2}=\|\mathbf {v+w} \|^{2}+\|\mathbf {v-w} \|^{2}\,}

nói rằng hai lần tổng bình phương của độ dài các cạnh của hình bình hành bằng tổng bình phương độ dài của các đường chéo hình bình hành. Bất kỳ chuẩn nào thỏa mãn đẳng thức trên thì tự nó là một chuẩn trong một không gian tích trong.[59]

Đẳng thức Pytago có thể mở rộng cho nhiều hơn hai vectơ trực giao. Nếu v1, v2,..., vn là những cặp vectơ trực giao trong một không gian tích trong, thì áp dụng định lý Pytago liên tiếp cho từng cặp vectơ này (như đã miêu tả đối với 3 cạnh của hình hộp chữ nhật ở phần hình học không gian) thu được phương trình như sau[60]

‖ ∑ k = 1 n v k ‖ 2 = ∑ k = 1 n ‖ v k ‖ 2 {\displaystyle \left\|\sum _{k=1}^{n}\mathbf {v} _{k}\right\|^{2}=\sum _{k=1}^{n}\|\mathbf {v} _{k}\|^{2}}


Hình học phi Euclid

Bài chi tiết: Hình học phi Euclid

Định lý Pythagoras được suy ra từ các tiên đề trong hình học Euclid, và quả thật, định lý này không còn đúng trong hình học phi Euclid.[61] (Có thể chứng minh được rằng, định lý Pythagoras là tương đương với tiên đề Euclid về đường thẳng song song (tiên đề thứ năm).[62][63])Nói cách khác, trong hình học phi Euclid, liên hệ giữa các cạnh của một tam giác sẽ có dạng khác công thức Pytago. Ví dụ, trong hình học cầu, cả ba cạnh của một tam giác vuông (tương ứng là a, b, và c) chiếm một phần tám mặt cầu đơn vị có độ dài bằng nhau và bằng π/2, và mọi góc của nó cũng là góc vuông, hay không tuân theo định lý Pytago nữa bởi vì a2 + b2 ≠ c2.

Ở đây xét đến hai hình học phi-Euclid đó là hình học cầu và hình học hyperbolic phẳng; trong mỗi trường hợp, như đối với hình học Euclid cho các tam giác không vuông, kết quả thay thế công thức Pytago bằng định luật cos phù hợp.

Tuy vậy, định lý Pythagoras vẫn còn đúng trong hình học hyperbolic và hình học elliptic nếu điều kiện tam giác vuông được thay thế bằng điều kiện tổng của hai góc bằng góc còn lại, như A+B = C. Lúc đó ba cạnh có liên hệ như sau: tổng diện tích của hình tròn với đường kính a và b bằng diện tích hình tròn có đường kính c.[64]

Hình học cầu

Bài chi tiết: Hình học cầu
Tam giác cầu.

Với bất kỳ một tam giác vuông trên mặt cầu bán kính R (ví dụ, nếu γ trong hình bên là góc vuông), với các cạnh a, b, c, thì ba cạnh liên hệ với nhau theo công thức:[65]

cos ⁡ ( c R ) = cos ⁡ ( a R ) cos ⁡ ( b R ) . {\displaystyle \cos \left({\frac {c}{R}}\right)=\cos \left({\frac {a}{R}}\right)\cos \left({\frac {b}{R}}\right).}

Công thức này là trường hợp đặc biệt của định lý cos trên mặt cầu mà áp dụng cho mọi tam giác cầu:

cos ⁡ ( c R ) = cos ⁡ ( a R ) cos ⁡ ( b R ) + sin ⁡ ( a R ) sin ⁡ ( b R ) cos ⁡ γ {\displaystyle \cos \left({\frac {c}{R}}\right)=\cos \left({\frac {a}{R}}\right)\cos \left({\frac {b}{R}}\right)+\sin \left({\frac {a}{R}}\right)\sin \left({\frac {b}{R}}\right)\cos \gamma }

Bằng cách thể hiện chuỗi Maclaurin cho hàm cos như là khai triển tiệm cận với số hạng còn lại trong ký hiệu O lớn,

cos ⁡ x = 1 − x 2 2 + O ( x 4 )  khi  x → 0 {\displaystyle \cos x=1-{\frac {x^{2}}{2}}+O\left(x^{4}\right){\text{ khi }}x\to 0\,}

có thể chứng minh rằng khi R tiến tới vô hạn và các đối số a/R, b/R, và c/R tiến tới không, liên hệ cầu giữa các cạnh của một tam giác vuông sẽ tiệm cận về dạng công thức Pytago trong hình học Euclid. Thay thế khai triển tiệm cận cho mỗi hàm cos trong công thức cầu cho một tam giác vuông thu được

1 − 1 2 ( c R ) 2 + O ( 1 R 4 ) = [ 1 − 1 2 ( a R ) 2 + O ( 1 R 4 ) ] [ 1 − 1 2 ( b R ) 2 + O ( 1 R 4 ) ]  khi  R → ∞ {\displaystyle 1-{\frac {1}{2}}\left({\frac {c}{R}}\right)^{2}+O\left({\frac {1}{R^{4}}}\right)=\left[1-{\frac {1}{2}}\left({\frac {a}{R}}\right)^{2}+O\left({\frac {1}{R^{4}}}\right)\right]\left[1-{\frac {1}{2}}\left({\frac {b}{R}}\right)^{2}+O\left({\frac {1}{R^{4}}}\right)\right]{\text{ khi }}R\to \infty }

Các hằng số a4, b4, và c4 được gộp vào số hạng O lớn còn lại do chúng độc lập với bán kính R. Liên hệ tiệm cận này có thể làm đơn giản hơn nữa bằng cách thực hiện khai triển tích ở trên, triệt tiêu các số hạng, nhân hai vế với −2, và sắp xếp lại số hạng:

( c R ) 2 = ( a R ) 2 + ( b R ) 2 + O ( 1 R 4 )  khi  R → ∞ {\displaystyle \left({\frac {c}{R}}\right)^{2}=\left({\frac {a}{R}}\right)^{2}+\left({\frac {b}{R}}\right)^{2}+O\left({\frac {1}{R^{4}}}\right){\text{ khi }}R\to \infty }

Sau khi nhân lên R2, xuất hiện công thức Pytago trong hình học Euclid c2 = a2 + b2 khi coi bán kính R tiến đến vô cùng lớn (do các số hạng còn lại tiến tới không):

c 2 = a 2 + b 2 + O ( 1 R 2 )  khi  R → ∞ {\displaystyle c^{2}=a^{2}+b^{2}+O\left({\frac {1}{R^{2}}}\right){\text{ khi }}R\to \infty }

Đối với một tam giác nhỏ  (a, b << R), có thể bỏ qua hàm cos để tránh mất ý nghĩa (loss of significance), thu được

sin 2 ⁡ c 2 R = sin 2 ⁡ a 2 R + sin 2 ⁡ b 2 R − 2 sin 2 ⁡ a 2 R sin 2 ⁡ b 2 R . {\displaystyle \sin ^{2}{\frac {c}{2R}}=\sin ^{2}{\frac {a}{2R}}+\sin ^{2}{\frac {b}{2R}}-2\sin ^{2}{\frac {a}{2R}}\sin ^{2}{\frac {b}{2R}}\,.}

Hình học hyperbolic

Bài chi tiết: Hình học hyperbolic
Tam giác hyperbolic.

Trong không gian hyperbolic có độ cong đều −1/R2, một tam giác vuông với hai cạnh kề a, b, và cạnh huyền c, liên hệ giữa các cạnh có dạng:[66]

cosh ⁡ c R = cosh ⁡ a R cosh ⁡ b R {\displaystyle \cosh {\frac {c}{R}}=\cosh {\frac {a}{R}}\,\cosh {\frac {b}{R}}}

với cosh là hàm cos hyperbolic. Công thức này là một dạng đặc biệt của định lý cos hyperbolic áp dụng cho mọi tam giác hyperbolic:[67]

cosh ⁡ c R = cosh ⁡ a R   cosh ⁡ b R − sinh ⁡ a R   sinh ⁡ b R   cos ⁡ γ {\displaystyle \cosh {\frac {c}{R}}=\cosh {\frac {a}{R}}\ \cosh {\frac {b}{R}}-\sinh {\frac {a}{R}}\ \sinh {\frac {b}{R}}\ \cos \gamma \,}

với γ là góc tại đỉnh đối diện với cạnh c.

Bằng cách sử dụng chuỗi Maclaurin cho hàm cos hyperbolic, cosh x ≈ 1 + x2/2, có thể chứng minh được rằng khi tam giác hyperbolic trở lên  vô cùng bé (tức là, khi a, b, và c tiến tới zero), liên hệ hyperbolic cho một tam giác vuông thu về công thức Pythagoras.

Đối với một tam giác vuông nhỏ (a, b << R), cosin hypebolic có thể viết thành dạng sau mà không mất đi độ chính xác lớn

sinh 2 ⁡ c 2 R = sinh 2 ⁡ a 2 R + sinh 2 ⁡ b 2 R + 2 sinh 2 ⁡ a 2 R sinh 2 ⁡ b 2 R . {\displaystyle \sinh ^{2}{\frac {c}{2R}}=\sinh ^{2}{\frac {a}{2R}}+\sinh ^{2}{\frac {b}{2R}}+2\sinh ^{2}{\frac {a}{2R}}\sinh ^{2}{\frac {b}{2R}}\,.}

Tam giác vô cùng bé

Với bất kỳ độ cong đều K (mang dấu dương, bằng 0, hoặc âm), trong một tam giác vô cùng bé (|K|a2, |K|b2 << 1) với cạnh huyền c, có thể chứng minh liên hệ như sau

c 2 = a 2 + b 2 − K 3 a 2 b 2 − K 2 45 a 2 b 2 ( a 2 + b 2 ) − 2 K 3 945 a 2 b 2 ( a 2 − b 2 ) 2 + O ( K 4 c 10 ) . {\displaystyle c^{2}=a^{2}+b^{2}-{\frac {K}{3}}a^{2}b^{2}-{\frac {K^{2}}{45}}a^{2}b^{2}\left(a^{2}+b^{2}\right)-{\frac {2K^{3}}{945}}a^{2}b^{2}\left(a^{2}-b^{2}\right)^{2}+O\left(K^{4}c^{10}\right)\,.}

Hình học vi phân

Bài chi tiết: Hình học vi phân
Khoảng cách giữa các điểm cách nhau một khoảng vô cùng bé trong hệ tọa độ Descartes (bên trên) và trong hệ tọa độ cực (bên dưới), cho bởi định lý Pythagoras.

Ở khoảng cách vô cùng bé, trong không gian ba chiều, định lý Pythagoras miêu tả khoảng cách giữa hai điểm gần nhau một khoảng vô cùng bé:

d s 2 = d x 2 + d y 2 + d z 2 , {\displaystyle ds^{2}=dx^{2}+dy^{2}+dz^{2},}

với ds là nguyên tố khoảng cách và (dx, dy, dz) là các thành phần của vectơ nối giữa hai điểm. Những không gian như thế được gọi là không gian Euclid. Tuy nhiên, trong hình học Riemann, biểu thức tổng quát cho mọi hệ tọa độ toàn cục (không chỉ là hệ tọa độ Descartes) và không gian tổng quát (không chỉ đối với không gian Euclid) có dạng:[68]

d s 2 = ∑ i , j n g i j d x i d x j {\displaystyle ds^{2}=\sum _{i,j}^{n}g_{ij}\,dx_{i}\,dx_{j}}

mà các nhà toán học thường gọi là tensor metric. (Đôi khi, một số nơi gọi thuật ngữ này miêu tả cho tập hợp các hệ số gij.) Nó là một hàm số của vị trí, và dùng để miêu tả trong không gian cong. Một ví dụ đơn giản đó là khoảng cách trong không gian phẳng (không gian Euclid) được biểu diễn trong hệ tọa độ cong. Ví dụ, trong hệ tọa độ cực:

d s 2 = d r 2 + r 2 d θ 2 {\displaystyle ds^{2}=dr^{2}+r^{2}d\theta ^{2}}

Hoặc trong không-thời gian phẳng của thuyết tương đối hẹp, tenxơ mêtric Minkowski có dạng:

Δ s 2 = − c 2 Δ t 2 + Δ x 2 + Δ y 2 + Δ z 2 = d s 2 = − c 2 d t 2 + d x 2 + d y 2 + d z 2 = η μ ν d x μ d x ν {\displaystyle \Delta s^{2}=-c^{2}\Delta t^{2}+\Delta x^{2}+\Delta y^{2}+\Delta z^{2}=ds^{2}=-c^{2}dt^{2}+dx^{2}+dy^{2}+dz^{2}=\eta _{\mu \nu }dx^{\mu }dx^{\nu }}

Còn trong không thời gian cong của thuyết tương đối rộng, tenxơ mêtric là nghiệm của phương trình trường Einstein và các điều kiện biên khác, ví dụ nổi tiếng đó là mêtric Schwarzschild viết trong hệ tọa độ cầu x μ → ( c t , r , θ , ϕ ) {\displaystyle x^{\mu }\rightarrow (ct,r,\theta ,\phi )\,} sử dụng dấu mêtric (-, +, +, +),:

d s 2 = c 2 d τ 2 = − ( 1 − r s r ) c 2 d t 2 + ( 1 − r s r ) − 1 d r 2 + r 2 ( d θ 2 + sin 2 ⁡ θ d φ 2 ) , {\displaystyle ds^{2}=c^{2}{d\tau }^{2}=-\left(1-{\frac {r_{s}}{r}}\right)c^{2}dt^{2}+\left(1-{\frac {r_{s}}{r}}\right)^{-1}dr^{2}+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\varphi ^{2}\right),}

Tài liệu tham khảo

WikiPedia: Định lý Pythagoras http://www.sunsite.ubc.ca/LivingMathematics/V001N0... http://publish.uwo.ca/~jbell/ http://www.bloomsburypress.com/books/catalog/hidde... http://www.britannica.com/EBchecked/topic/485209 //books.google.com/books?id=mIT5-BN_L0oC&pg=PA77 http://www.mathopenref.com/pythagorastheorem.html http://mathworld.wolfram.com/PythagoreanTheorem.ht... http://aleph0.clarku.edu/~djoyce/java/elements/boo... http://aleph0.clarku.edu/~djoyce/java/elements/boo... http://aleph0.clarku.edu/~djoyce/java/elements/ele...